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Abstract

We have simulated a dilute polymer solution under simple shear and elongational flows using the bead-rod-chain model, by incorporating

intra-chain hydrodynamic interaction and excluded volume effects. Configurational properties and rheological quantities were calculated.

For the simple shear flow, shear rate dependencies of chain’s size, shape, and rotation were monitored. Shear-thinning was observed at all

shear rates. In addition, the critical strain rate, 1c; at which the polymer undergoes a coil-stretch transition under elongational flow, was

investigated. The slope at the inflection point of the logðR2
gÞ vs logð1Þ curve increased as the chain length increased, indicating a possible first

order transition, in agreement with theories and experiments.

q 2003 Published by Elsevier Ltd.
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1. Introduction

Polymer liquids in flows exhibit several interesting

phenomena. Such behavior is typically due to the non-

Newtonian nature of the macromolecular fluid. For

example, polymer solutions and melts in shear flows

undergo a decrease in viscosity with increase in shear

rate. This shear-thinning behavior is observed in most

polymer solutions that have a shear rate dependent

viscosity, although there are a few polymer solutions that

are dilatant (i.e. that exhibit shear-thickening). The normal

stresses are also non-zero and shear rate dependent. There

are many experimental investigations of shear-thinning

(see, for example, [1–4]).

Another interesting phenomenon is the existence of the

coil-stretch transition when the polymeric liquid is under an

elongational flow. The nature of this transition is still

unclear, although De Gennes has predicted the presence of a

first order phase transition for two-dimensional elongational

flows [5].

Experiments performed by Odell et al. and by others

have shown the critical strain rate 1c to be related to the

molecular weight of the polymer by a power law, 1c , N2b;

b ¼ 1:5 independent of solvent quality [6–11]. Different

values of b have also been reported by other authors for

good solvents [12,13].

To calculate the rheological properties of the complex

fluid, the exact approach would be to include the effect of

solvent molecules as well as macromolecules. Although

such calculations are extant, the overwhelming compu-

tational burdens involved make their application still very

limited.

The solvent is therefore usually neglected and the system

is approximated by theoretical models. The simplest model

is the Rouse model [18], where the solvent is approximated

by pure random noises. However, as it completely ignores

the effect of excluded-volume and hydrodynamic inter-

actions (HI), a simulation of a dilute polymer solution based

on the Rouse model would not take into account the long-

ranged hydrodynamic coupling, and would not predict

shear-thinning behavior, nor yield correct scaling laws for

material and transport functions.

The Kirkwood–Riseman–Zimm model [19,20] takes HI

into account with a pre-averaging approximation and

obtains correct scaling laws, but the material functions are

independent of shear rate. Several authors have contributed

other models, improving over the pre-averaging HI

approximation and including excluded volume effects

[21–28,35,37–40]. In particular, Fixman made a correction
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to the Zimm pre-averaging approximation by his

perturbative calculation of the effect of HI [21–25].

Öttinger developed a consistently averaging model and

obtained the correct flow-rate dependence for the material

functions [36]. Further details of theory, simulation models

and experimental data, can be found in, for example, Bird

et al. [31,32], Yamakawa [33], Öttinger [34] and in Petera

and Muthukumar [38] (here-after referred to as P–M) and

the references cited therein. Öttinger has explicitly refor-

mulated the diffusion equation for polymer chains under

constraints and with HI into a set of stochastic differential

equations; he has demonstrated the construction of Brow-

nian dynamics simulation algorithms and the technique of

calculation therein of stresses [35]. P–M implemented

Öttinger’s bead-rod-chain model in a Brownian dynamics

simulation with excluded volume effects and obtained

correct shear-thinning behavior [38]. Here in this paper,

following the same algorithm as in P–M, we have simulated

a single freely jointed chain, with number of units N up to

60, under shear and elongational flows. We calculated both

configurational and rheological quantities mainly in the mid

and high strain rate regimes. We also paid attention to the

coil-stretch transition in the low flow rate regime. As

mentioned earlier, it is still debatable whether the coil-

stretch transition is a first order transition; our simulations

for short chains indicate that the transition approaches

discontinuity as the chain length increases.

This paper proceeds as follows. We present our

simulation model in some detail in Section 2. Section 3

gives the results of our simulations, and Section 4 contains

the discussion of results and conclusions.

2. Algorithm

We modeled the polymer with N þ 1 beads connected

by N freely rotating rigid rods of length l: The system is

described by a diffusion equation derived by P–M from

the work of Öttinger by using connector vectors instead

of positional vectors.

If Ri denotes the position vector of the ith bead, the

connector vector between beads i and i 2 1 will be given by

ui ¼ Ri 2 Ri21: The stochastic differential equation for the

connector vectors is [38]

where the indices a; b;…; run from 1 to N and indices i; j;…;

from 0 to N:

In the above expression, z is the friction coefficient

defined by using Stokes’ law z ¼ 6phRhyd; with each bead

having the hydrodynamic radius Rhyd: The tensors Bij and ~Bij

transform between connector vectors and bead position

vectors. Hab is defined by Hab ¼
P

ij BaiBbjHij; with

the hydrodynamic interaction tensor Hij having the

Cholesky decomposition Hij ¼
P

k WikWT
jk: Wik is the

Cholesky decomposition of Hij: Wij; in turn, represents

the Cholesky decomposition of Hij and is used below.

For shear flows, G is the systematic shear flow matrix,

_ge1eT
2 ; _g being the flow rate and ei the unit vector in the ith

direction. For elongational flows, G would represent,

instead, the elongational flow matrix 1ðe1eT
1 2 1

2
e2eT

2 2 1
2

e3eT
3 Þ: Cab ¼

P
i BaiBbi is the usual Kramers matrix, M0

ab ¼

CabuT
a ub; N0

ab ¼ ððM0Þ21Þab; Mab ¼ uaHabub; Nab ¼

ðM21Þab and Kab ¼ dab þ NcbHacucuT
b : Fi are the forces

acting on bead i: A purely repulsive excluded volume is

used. ji is the random noise on bead i; satisfying

kjiðtÞl ¼ 0; kjiðtÞj
T
j ðt

0Þl ¼ dij1dðt 2 t0Þ: ð2Þ

The procedure used to solve the equation was as follows.

The beads were first moved without any constraints

utemp
a ¼ ua þ ð

1

lz

X
ci

Hbc
~BicFi þ

kT

l2z

X
cd

HbcN0
cdCdcuc

þ GubÞDt þ

ffiffiffiffiffiffiffiffiffi
2kTDt

l2z

s
WabDjb: ð3Þ

The discrete noise is Gaussian

kDjil ¼ 0; kDjiDj
T
j l ¼ dij1: ð4Þ

Constraints were then imposed by addition of forces

containing Lagrange parameters sa

unew
a ¼ utemp

a 2
X

b

H0
abuav

b sa ð5Þ

with

ðunew
a Þ2 ¼ 1 ð6Þ

H0
ab being evaluated at

uav
b ¼ 1

2
ðua þ utemp

a Þ: ð7Þ

dua ¼
X

b

Kab

  
1

z

X
ci

Hbc
~BicFi þ

kT

z

X
cd

HbcN0
cdCdcuc þ Gub

!
dt þ

ffiffiffiffiffiffiffi
2kT

z

s X
ij

BbiWijdjj

!

2
kT

z

X
bcd

Kab

 
HbcHcdudNcd þ

X
e

›Hbcab

›udd

ucgHdedeueeNce

!
dt

þ
kT

z

X
bc

HabubNbc

 
udHdcHceueNde 2 TrHcc

!
dt; ð1Þ
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Dimensionless variables are used in the simulation; Dt ¼ kT

Dt=l2z; for the time step, �g ¼ _gl2z=kT ; the shear strength,
�Rhyd ¼ Rhyd=l; the radius of beads for hydrodynamic

interaction, �Rex ¼ Rex=l; radius of beads for the excluded

volume interaction, and �A ¼ A=kT ; the strength of the

excluded volume interaction. For further details on the

equations used and the basis of their derivation, readers are

referred to P–M [38] and the references therein.

The shear flow used was defined by the flow field V given

by

Vx ¼ _gy Vy ¼ Vz ¼ 0: ð8Þ

The elongational flow employed was given by

Vx ¼ _gx Vy ¼ 2 1
2
_gy Vz ¼ 2 1

2
_gz: ð9Þ

The simulation protocols for both shear and elongational

flow were as follows. An excluded volume chain was

generated randomly in the solution. Then the Brownian

dynamics calculations were performed with applied shear or

elongational flow field. After a sufficiently long time

(ranging from 105 to 107 BD time steps depending on the

flow rate and chain length), to allow the system to reach a

steady state, the co-ordinates of the connector vectors of the

polymer were saved for every 1000 Brownian steps. The

time step for a given simulation varied from 0.001 to

0.00001, depending on the magnitude of the flow field. The

total simulation time varied from 106 steps to 5 £ 107 steps.

For simulations with hydrodynamics, the computational

time scales in proportion to N3; N being the degree of

polymerization. In P–M, a chain of up to N ¼ 20 beads was

simulated. By implementing a parallel algorithm we

managed to simulate a chain of up to N ¼ 60 beads. The

simulations were carried out on a 24-node alpha Linux

(533 MHZ) cluster. The typical run time for one simulation

was around two weeks.

3. Results for shear flow

In order to verify our implementation of the algorithm

described above, we simulated the same system as in P–M,

but with a much longer chain, N ¼ 60: A very good

agreement was found on comparing the results of our long

chain simulation to their simulation with shorter chains.

Results are summarized in Sections 3.1 and 3.2.

3.1. Configurational quantities

We calculated the gyration tensor and radius of gyration

of the polymer. The gyration tensor is defined by

G ¼
1

2N2

XN
i;j¼0

kðRi 2 RjÞðRi 2 RjÞ
Tl: ð10Þ

The radius of gyration is obtained from

R2
g ¼ Gxx þ Gyy þ Gzz: ð11Þ

Diagonalization of G gives us its principal axes, D11;D22

and D33: D11 being in the direction of the flow, we would

expect it to increase with increase in the shear rate, while the

other two principal axes decrease in magnitude. The results

are shown in Fig. 1 as functions of the reduced shear

strength. Our plots are very similar to the corresponding

figures shown in P–M. As expected, D11 increased as the

shear rate increased, while both D22 and D33 decreased. The

decrease of D33 is in contradiction with experimental results

[14], where it is observed to be a constant, but it was noticed

that D22 did, indeed, decrease at a much faster rate than D33:

The fact that D33 continued to decrease may be attributed to

the fact that our model chain has a maximal extension and to

the short chain effect, as was also pointed out by P–M.

The orientation angle u; the angle of rotation of the

principal axis with respect to the direction of shear flow, is

defined as cotð2uÞ ¼ Gxx 2 Gyy=2Gxy: Plots of u as a

function of the shear rate _g are shown in Fig. 2, for two

different chain lengths (N ¼ 20 and 60). As one would

expect, the values of the orientation angle are smaller for the

longer ðN ¼ 60Þ chain.

The rotational motion of the polymer around its center of

mass when in a shear flow is expected and has been known

in the literature. However, the exact mechanism of this

rotation has been somewhat unclear, although in a recent

work Aust et al. have looked into the rotation and

deformation of small chains [42]. If a rod were placed in a

shear-flow, it would just rotate about its center of mass. But

the behavior of a polymer, a flexible chain, is not as obvious.

A visualization of our simulation, as in Fig. 3, enables us to

actually observe the polymer chain’s periodic motion and

come to definite conclusions. The five snap-shots were taken

within one rotation cycle and are shown in sequence, in

the order of increasing time, from top (Fig. 3(a)) to bottom

Fig. 1. Principal components of the gyration tensor and Rg versus shear rate.
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(Fig. 3(e)). The arrows in the figure show the direction of

motion of the polymer segments relative to the center of mass.

The plot of Fig. 4 shows a graphical exposition of this

behavior. It shows the position (projection on the x axis) of

beads in a shear flow with _g ¼ 10; as a function of time.

Beads 10 and 50 are located symmetrically at either end of

the chain. As the chain stretches out and pulls back in again,

periodically with time, in the shear flow, the positions of the

beads accordingly oscillate about the center of mass

(located at the origin).

It was found that at mid and high shear rates, the polymer

rotated in a very distinct way: as it rotated, the rotation is

confined to a plane with a fixed orientation angle, while its

two hair-pins went backward and forward around the center

of mass. Since the rotational component of the shear flow is

proportional to the shear rate, _g; we would expect the period

of rotation to linearly depends on _g: Fig. 5 shows the period

of the rotational motion plotted vs the shear rate for our

simulation. It can be seen that in the mid and high shear rate

regime, the period is indeed linearly related to the shear rate.

This dependence is, however, unclear for small shear rates,

due to the large error bars for the simulation data in this

regime (as seen in Fig. 2). The reason for the large value of

error bars as shear rate tends to zero in Fig. 2, is that at low

shear rates, the chain tends to have a spherical configuration.

Therefore, the accuracy of the calculation of the preferred

orientation is poor in that regime. Also, the model used for

our simulations is not suitable for the polymer in the

quiescent state, and we would have to reformulate the

problem in order to accurately calculate material functions

Fig. 2. Orientation angle of the chain versus dimensionless shear rate.

Fig. 3. Snap shots of the rotational motion of the polymer under shear flow

with _g ¼ 100: Figures (a)–(e) are in the order of increasing time within the

same rotational cycle.

Fig. 4. Plot of position (projection on x-axis) of beads (numbers 10 and 50)

in a shear flow (with shear rate _g ¼ 10) as a function of time.

Fig. 5. Period of rotation of the polymer under simple shear flow as a

function of shear rate.
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in the zero shear rate limit. This explains the large error bars

for material function data at extremely low shear rates.

3.2. Rheological quantities

We extracted the stress tensor p from the position

vectors of the polymer, following the procedure detailed in

P–M. The viscosity h; first normal stress coefficient,C1;

and second normal stress coefficient,C2; can be calculated

from the following equations.

pyx ¼ 2h _g; pxx 2 pyy ¼ 2C1 _g
2
;

pyy 2 pzz ¼ 2C2 _g
2
:

ð12Þ

The material functions of the polymer chain under shear are

found to have the following properties. The viscosity and

the first normal stress coefficient both decrease as the shear

rate increases, which is the signature of shear-thinning. The

second normal stress coefficient is slightly negative. Our

results for long polymer chains ðN ¼ 60Þ are shown in Fig.

6. They are qualitatively consistent with the behavior of

material functions found by experiments and by P–M’s

previous simulations.

4. Results for elongational flow

For elongational flow, we are principally interested in the

critical strain rate 1c of the coil-stretch transition. This has

been observed by experiments [6,11,15] and in some

simulations [29], with and without including HI. Our results

are summarized in Figs. 7–10. We have plotted R2
g as a

function of strain rate in Fig. 7. The orientational order

parameter, S; for the system, is defined as the ensemble-

averaged value of the single bond order parameter Si for

bond i;

Si ¼
1
2
ð3cos2u2 1Þ; ð13Þ

where ui is the angle between bond i and x axis. The coil

state of the polymer corresponds to S , 0:0; while the fully

stretched state corresponds to S , 1:0: The values of S for

these two states are independent of the molecular weight N:

A plot of S as a function of the strain rate is shown in Fig.

8. Both Figs. 7 and 8 clearly show the existence of the coil-

stretch transition. Although this does not appear to be a

sharp transition, the slope of the inflection point of the

logðR2
gÞ vs logð1Þ curve increases with increasing chain

length, as shown in Fig. 9. This indicates a first order

transition in the thermodynamic limit. We define the

transition strain rate 1c as the value of the strain rate at

which the order parameter falls to 1=e (i.e. to 0.37). Using

this definition of the transition strain rate, we have plotted 1c

as a function of molecular weight on a log–log scale in Fig.

10. A fit of the data points yields an exponent of b ¼ 1:4;

which is close to the values of around 1.5 found by the

Fig. 6. Material functions of the polymer (a) reduced viscosity (hs is the

solvent viscosity), (b) first normal stress coefficient and (c) second normal

stress coefficient as functions of shear rate.
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experiments of Odell and Keller [6], Manasveta and

Hoagland [11] amongst others, and in simulation results

found by Hernandez Cifre and de la Torre [16] and Neelov

et al. [17] using different models.

5. Discussion and conclusion

We implemented a Brownian dynamics algorithm for the

simulation of a bead-rod-chain model for a dilute polymer

solution under pure shear and elongational flows. The bead-

rod-chain model constrains the bond length, thereby

preserving the crucial property of inextensibility of the

chemical bond, while models with bond extensibility might

fail to display shear-thinning at high shear rates. We showed

that our simulation produced the correct shear-thinning

behavior even at very high shear rates. The model also gave

the correct behavioral properties for the first and second

normal stress coefficients. All these results are in agreement

with earlier simulations done by P–M [38]. In that work, the

longest chain simulated had 20 beads, while the present paper

gives results for simulations for a chain up to 60 beads. By

simulating a longer chain, we hoped to overcome any small-

size effects that might have manifested themselves in the

results obtained in the previous paper. In particular, the

decrease of D33 with increase in shear rate was again

observed in our simulations, although the decrease in the

value of D33 was much slower than that of D22: We believe

that a chain length of 60 beads is still not sufficiently long

enough to overcome any pathological effects that might

result from the chain being too small. A much longer chain

length might be needed to obtain better results.

Fig. 7. Radius of gyration of the polymer under elongational flow as a

function of strain rate, for different chain lengths, initial condition of the

chains being a random coil.

Fig. 8. Orientational order parameter of polymer plotted as a function of

strain rate for different chain lengths.

Fig. 9. Slopes ðmÞ of the logðR2
gÞ vs logð1Þ curves at the inflection point as

function of chain length N (The values are obtained by the following

procedure: the logðR2
gÞ curves in Fig. 6 are first fitted with a logistic function

and the slopes are then calculated at the inflection point).

Fig. 10. Plot of critical elongational rate as a function of chain length.
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We also simulated a dilute polymer solution in elonga-

tional flow. Our interest was in clarifying the nature

(whether first-order or not) of the coil-stretch transition

that is observed experimentally. Although this (Fig. 8) did

not appear to be a sharp transition, the increase in slope at

the inflection point of the log–log plot of R2
g vs 1 with

increase in chain length N (Fig. 9), points towards the

occurrence of a first order transition in the thermodynamic

limit. Instead of finding a sharp, abrupt transition, we found

that the coil state migrated to the stretched state gradually as

the flow rate increased. This result agrees with the

theoretical prediction of a first-order transition by De

Gennes [5] and observed in some simulations with HI, but is

in disagreement with simulations done by Liu [26] and

others. If hydrodynamic interaction between beads is

suppressed, the transition is found to be of first order [30].

In the present work, hydrodynamics is represented only

implicitly. The effects of explicit incorporation of hydro-

dynamics, by including all of the solvent particles, are not

obvious and are to be explored in the future. We calculated

the transition strain rate 1c by keeping track of the order

parameter, as described in the last section. We found an

exponent of b ¼ 1:4; for the decreasing dependence of 1c on

chain length, which is close to the experimental result [11].

The results of our simulations shown above underline the

utility of the bead-rod-chain model in Brownian dynamics

simulations of polymer fluids over a wide spectrum of flow

rates, as we obtained correct results at very low flow rates,

as well as at very high values. The disadvantage of this

model, though, is that the computational time is higher than

for some other simpler models such as the bead-spring

model, as it uses the computationally expensive Shake

algorithm [41] to constrain the bond length; it is hoped that

further advances in computing power and algorithms will

minimize this.
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for helpful discussions. Acknowledgment is made to the

Materials Science Research and Engineering Center,

University of Massachusetts, Amherst.

References

[1] Kotaka T, Suzuki H, Inagaki H. J Chem Phys 1966;45:2770.

[2] Huppler JD, Ashare E, Holmes LA. Trans Soc Rheol 1967;11:159.

[3] Vlassopoulos D, Schowalter WR. J Rheol 1995;38:1427.

[4] Tiu C, Moussa T, Carreau R. J Rheol Acta 1995;34:586.

[5] De Gennes PG. J Chem Phys 1974;60:5030.

[6] Odell JA, Keller A. J Polym Sci: Part B: Polym Phys 1986;24:1889.

[7] Keller A, Odell JA. Colloid Polym Sci 1985;263:181.

[8] Cathey CA, Fuller GG. J Non-Newtonian Fluid Mech 1990;34:63.

[9] Narh KA, Odell JA, Keller A. J Polym Sci, Polym Phys Ed 1992;30:

335.

[10] Farrell CJ, Keller A, Miles MJ, Pope DP. Polymer 1980;21:1292.

[11] Menasveta MJ, Hoagland DA. Macromolecules 1992;25:7060.

[12] Brestkin YV, Saddikov IS, Agranova SA, Baranov VG, Frenkel S.

Polym Bull 1986;15:147.

[13] Atkins EDT, Attwool PT, Miles MJ. Bristol Conference on

Macromolecular Flexibility and Behaviour in Solution. Bristol, UK;

1986.

[14] Link A, Springer J. Macromolecules 1993;26:464.

[15] Perkins TT, Smith DE, Chu S. Science 1997;276:2016.

[16] Hernandez Cifre JG, de la Torre JG. J Rheol 1999;43:339.

[17] Neelov IM, Adolf DB, Lyulin AV, Davies GR. J Chem Phys 2002;

117:4030.

[18] Rouse PE. J Chem Phys 1953;21:1272.

[19] Kirkwood JG, Riseman J. J Chem Phys 1948;16:565.

[20] Zimm BH. J Chem Phys 1956;24:269.

[21] Fixman M. J Chem Phys 1965;42:3831.

[22] Pyun CW, Fixman M. J Chem Phys 1965;42:3838.

[23] Pyun CW, Fixman M. J Chem Phys 1966;44:2107.

[24] Fixman M. J Chem Phys 1966;45:785.

[25] Fixman M. J Chem Phys 1966;45:793.

[26] Liu TW. J Chem Phys 1989;90:5826.

[27] Doyle PS, Shaqfeh ESG, Gast AP. J Fluid Mech 1997;334:251.

[28] Jendrejack RM, Graha MD, de Pablo JJ. J Chem Phys 2000;113:1.

[29] Larson RG, Hu H, Smith DE, Chu S. J Rheol 1999;43:267.

[30] Dukovski I, Muthukumar M. J Chem Phys 2003;118:6648.

[31] Bird RB, Armstrong C, Hassager O. Dynamics of polymeric liquids.

Fluid mechanics, vol. 1. New York: Wiley; 1977.

[32] Bird RB, Curtiss CF, Armstrong C, Hassager O. Dynamics of

polymeric liquids, 2nd ed. Kinetic theory, vol. 2. New York: Wiley;

1987.

[33] Yamakawa H. Modern theory of polymer solutions. New York:

Harper and Row; 1971.
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